Untitled

 2 mark

| -0.25 mark |

 60 minutes

Question 1:

एक दो-अंकीय संख्या इस प्रकार है कि इस संख्या और इसके अंकों का क्रम उलटा करके बनने वाली संख्या का योगफल 55 है। इसके अलावा, इस संख्या और इसके अंकों का क्रम उलटा करके बनने वाली संख्या का अंतर 45 है। अंकों का गुणनफल क्या है?

Question 2:

a और b के बीच किस संबंध के लिए, समीकरण \( \sin \theta=\frac{\mathrm{a}+\mathrm{b}}{2 \sqrt{\mathrm{ab}}} \) संभव है ?

Question 3:

एक व्यक्ति ने ₹ 10,000 तिमाही रूप से संयोजित \(12 \%\) वार्षिक ब्याज की दर पर 9 महीने के लिए उधार लिया। 9 महीने बाद अपना हिसाब चुकाने के लिए उसे कितना ब्याज देना पड़ेगा?

Question 4:

तीन व्यक्ति A, B और C एक साथ मिलकर एक काम को 36 दिन में कर सकते हैं। A और B एक साथ अकेले C की तुलना में पाँच गुना काम कर सकते हैं; B और C एक साथ अकेले A जितना काम कर सकते हैं। यदि A और C एक साथ अकेले B की तुलना में n गुना काम कर सकते हैं, तो n का मान क्या है?

Question 5:

यदि A और B एक काम को 10 दिनों में समाप्त कर सकते हैं, B और C इसी काम को 12 दिनों में समाप्त कर सकते हैं, C और A इसी काम को 15 दिनों में समाप्त कर सकते हैं; तो \( \mathrm{A}, \mathrm{B} \) और C एक साथ इससे आधे काम को कितने दिनों में समाप्त कर सकते हैं?

Question 6:

यदि \( a^2 - bc = \alpha, b^2 - ac = \beta, c^2 - ab = \gamma \), तो \( \frac{a \alpha + b \beta + c \gamma}{(a+b+c)(\alpha+\beta+\gamma)} \) किसके बराबर है ?

Question 7:

यदि \( \mathrm{x}^{4}+\alpha \mathrm{x}^{3}+\beta \mathrm{x}^{2}+\gamma \mathrm{x}-1 \) का एक गुणनखंड \( (\mathrm{x}-1)^{3} \) है, तो इसका अन्य गुणनखंड क्या होगा ?

Question 8:

n संख्याओं के 10 और 20 से विचलनों के योगफल क्रमश: a और b हैं । यदि \( \frac{\mathrm{b}}{\mathrm{a}}=-4 \) है, तो इन n संख्याओं का माध्य क्या है ?

Question 9:

एक व्यक्ति अपने घर से \( 3 \mathrm{~km} / \mathrm{hr} \) की औसत चाल से चलता है और ऑफिस 40 मिनट जल्दी पहुँच जाता है। यदि वह व्यक्ति \( 2 \mathrm{~km} / \mathrm{hr} \) की औसत चाल से चलता है, तो वह ऑफिस 40 मिनट देरी से पहुँचेगा। उसके घर और ऑफिस के बीच की दूरी कितनी है?

Question 10:

यदि प्रेक्षणों \[12,1,8,54,61,28,45,35,21,17\] का माध्यक \(M\) है, तो \(2M+5\) का मान क्या है?

Question 11:

मान लीजिए दो दी गई संख्याओं का LCM, L और HCF, H है। L और H, 3:2 के अनुपात में हैं। यदि दोनों संख्याओं का योगफल 45 है, तो इन संख्याओं का गुणनफल क्या है ?

Question 12:

यदि \( \frac{2a}{3} = \frac{4b}{5} = \frac{3c}{4} \), तो \( \frac{18}{a} \sqrt{a^{2} + c^{2} - b^{2}} \) का मान क्या है ?

Question 13:

समीकरण \( \sqrt{\mathrm{x}+9}=\mathrm{x}-3 \) के वास्तविक मूलों की संख्या क्या है ?

Question 14:

यदि \( \mathrm{x}=97+56 \sqrt{3} \) है, तो \( \sqrt[4]{\mathrm{x}}+\frac{1}{\sqrt[4]{\mathrm{x}}} \) का मान क्या है ?

Question 15:

एक व्यक्ति अपने घर से ऑफिस तक की दूरी को तय करने के लिए दो अलग-अलग चालों का उपयोग करता है। यदि वह व्यक्ति 3 किमी/घंटा की चाल से चलता है, तो वह 40 मिनट पहले पहुँच जाता है। यदि वह 2 किमी/घंटा की चाल से चलता है, तो वह 40 मिनट देरी से पहुँचता है। घर और ऑफिस के बीच की दूरी क्या है?

Question 16:

यदि एक व्यक्ति 3 किमी/घंटा की चाल से चलकर ऑफिस 40 मिनट पहले पहुँचता है और 2 किमी/घंटा की चाल से 40 मिनट देरी से पहुँचता है, तो उसकी औसत चाल क्या होगी?

Question 17:

यदि एक व्यक्ति 3 किमी/घंटा की चाल से चलकर ऑफिस 40 मिनट पहले पहुँचता है, तो वह कितनी दूरी तय करता है?

Question 18:

What is
\[
\begin{array}{r}
3(\sin x-\cos x)^{4}+6(\sin x+\cos x)^{2}+ \\
4(\sin x)^{6}+4(\cos x)^{6}
\end{array}
\]
equal to?

Question 19:

What is the value of \( \sin \theta+\cos \theta \), if \( \theta \) satisfies the equation \( \cot^{2} \theta - (\sqrt{3}+1)\cot \theta + \sqrt{3} = 0 \); \( 0 < \theta < \frac{\pi}{4} \)?

Question 20:

Which one of the following is a value of \( \theta \), if \( \theta \) satisfies the equation \( \tan 2 \theta \tan 4 \theta - 1 = 0 \); \( 0 < \theta < \frac{\pi}{2} \) ?

Question 21:

Consider the following statements:
1. If \((\mathrm{a}+\mathrm{b})\) is directly proportional to \((\mathrm{a}-\mathrm{b})\), then \((\mathrm{a}^{2}+\mathrm{b}^{2})\) is directly proportional to ab.
2. If a is directly proportional to b, then \((a^{2}-b^{2})\) is directly proportional to ab.
Which of the statements given above is/are correct?

Question 22:

The combined age of a man and his wife is 6 times the combined age of their children. Two years ago their combined age was 10 times the combined age of their children; and six years later their combined age will be 3 times the combined age of their children. How many children do they have if each child is at least 2 years old?

Question 23:

Which one of the following is a value of \( \theta \), if \( \theta \) satisfies the equation \( \tan 2 \theta \tan 4 \theta - 1 = 0 \); \( 0 < \theta < \frac{\pi}{2} \)?

Question 24:

What is the value of \( \sin \theta+\cos \theta \), if \( \theta \) satisfies the equation \( \cot^{2}\theta-(\sqrt{3}+1)\cot\theta+\sqrt{3}=0 \); \( 0<\theta<\frac{\pi}{4} \)?

Question 25:

What is \(3(\sin x - \cos x)^{4} + 6(\sin x + \cos x)^{2} + 4(\sin x)^{6} + 4(\cos x)^{6}\) equal to?

Question 26:

Consider the following statements:
1. If \((a+b)\) is directly proportional to \((a-b)\), then \((a^2+b^2)\) is directly proportional to ab.
2. If a is directly proportional to b, then \((a^2-b^2)\) is directly proportional to ab.
Which of the statements given above is/are correct?

Question 27:

The combined age of a man and his wife is 6 times the combined age of their children. Two years ago their combined age was 10 times the combined age of their children; and six years later their combined age will be 3 times the combined age of their children. How many children do they have if each child is at least 2 years old?

Question 28:

Consider the following statements:
1. If \((a+b)\) is directly proportional to \((a-b)\), then \((a^2+b^2)\) is directly proportional to \(ab\).
2. If \(a\) is directly proportional to \(b\), then \((a^2-b^2)\) is directly proportional to \(ab\).
Which of the statements given above is/are correct?

Question 29:

Which one of the following is a value of \( \theta \), if \( \theta \) satisfies the equation \( \tan 2 \theta \tan 4 \theta - 1 = 0 \); \( 0<\theta<\frac{\pi}{2} \) ?

Question 30:

What is the value of \( \sin \theta+\cos \theta \), if \( \theta \) satisfies the equation \( \cot^{2} \theta-(\sqrt{3}+1)\cot \theta+\sqrt{3}=0 \); \(0<\theta<\frac{\pi}{4}\)?

Question 31:

What is \(3(\sin x-\cos x)^{4} + 6(\sin x+\cos x)^{2} + 4(\sin x)^{6} + 4(\cos x)^{6}\) equal to?

Question 32:

The combined age of a man and his wife is 6 times the combined age of their children. Two years ago their combined age was 10 times the combined age of their children; and six years later their combined age will be 3 times the combined age of their children. How many children do they have if each child is at least 2 years old?

Question 33:

Consider the following statements:
1. If \((a+b)\) is directly proportional to \((a-b)\), then \((a^2+b^2)\) is directly proportional to ab.
2. If a is directly proportional to b, then \((a^2-b^2)\) is directly proportional to ab.
Which of the statements given above is/are correct?

Question 34:

What is the value of \( \sin \theta+\cos \theta \), if \( \theta \) satisfies the equation \( \cot^{2}\theta - (\sqrt{3}+1)\cot\theta + \sqrt{3} = 0 \); \( 0 < \theta < \tfrac{\pi}{4} \)?

Question 35:

What is
\[
\begin{array}{r}
3(\sin x-\cos x)^{4}+6(\sin x+\cos x)^{2}+ \\
4(\sin x)^{6}+4(\cos x)^{6}
\end{array}
\]
equal to?

Question 36:

Which one of the following is a value of \( \theta \), if \( \theta \) satisfies the equation \( \tan 2 \theta \tan 4 \theta-1=0 \); \( 0<\theta<\frac{\pi}{2} \) ?

Question 37:

The combined age of a man and his wife is 6 times the combined age of their children. Two years ago their combined age was 10 times the combined age of their children; and six years later their combined age will be 3 times the combined age of their children. How many children do they have if each child is at least 2 years old?

Question 38:

Which one of the following is a value of \( \theta \), if \( \theta \) satisfies the equation \( \tan 2 \theta \tan 4 \theta - 1 = 0 \); \( 0 < \theta < \frac{\pi}{2} \)?

Question 39:

Consider the following statements:
1. If \((a+b)\) is directly proportional to \((a-b)\), then \((a^2+b^2)\) is directly proportional to \(ab\).
2. If \(a\) is directly proportional to \(b\), then \((a^2-b^2)\) is directly proportional to \(ab\).
Which of the statements given above is/are correct?

Question 40:

What is the value of \( \sin \theta+\cos \theta \), if \( \theta \) satisfies the equation \( \cot^{2} \theta-(\sqrt{3}+1) \cot \theta+\sqrt{3}=0 \); \( 0<\theta<\frac{\pi}{4} \) ?

Question 41:

What is
\[
\begin{array}{r}
3(\sin x-\cos x)^{4}+6(\sin x+\cos x)^{2}+ \\
4(\sin x)^{6}+4(\cos x)^{6}
\end{array}
\]
equal to?

Question 42:

The combined age of a man and his wife is 6 times the combined age of their children. Two years ago their combined age was 10 times the combined age of their children; and six years later their combined age will be 3 times the combined age of their children. How many children do they have if each child is at least 2 years old?

Question 43:

Which one of the following is a value of \( \theta \), if \( \theta \) satisfies the equation \( \tan 2 \theta \tan 4 \theta - 1 = 0 \); \( 0 < \theta < \tfrac{\pi}{2} \)?

Question 44:

What is the value of \( \sin \theta+\cos \theta \), if \( \theta \) satisfies the equation \( \cot^{2}\theta - (\sqrt{3}+1)\cot\theta + \sqrt{3} = 0 \); \( 0 < \theta < \tfrac{\pi}{4} \)?

Question 45:

What is \(3(\sin x-\cos x)^4 + 6(\sin x+\cos x)^2 + 4(\sin x)^6 + 4(\cos x)^6\) equal to?

Question 46:

Consider the following statements :
1. If \( (\mathrm{a}+\mathrm{b}) \) is directly proportional to \( (\mathrm{a}-\mathrm{b}) \), then \( \left(\mathrm{a}^{2}+\mathrm{b}^{2}\right) \) is directly proportional to ab.
2. If a is directly proportional to b, then \( \left(a^{2}-b^{2}\right) \) is directly proportional to \( a b \).
Which of the statements given above is/are correct?

Question 47:

The combined age of a man and his wife is 6 times the combined age of their children. Two years ago their combined age was 10 times the combined age of their children; and six years later their combined age will be 3 times the combined age of their children. How many children do they have if each child is at least 2 years old ?

Question 48:

Which one of the following is a value of \( \theta \), if \( \theta \) satisfies the equation \( \tan 2 \theta \tan 4 \theta - 1 = 0 \); \( 0 < \theta < \frac{\pi}{2} \)?

Question 49:

What is \
\[
\begin{array}{r}
3(\sin x-\cos x)^{4}+6(\sin x+\cos x)^{2}+ \\
4(\sin x)^{6}+4(\cos x)^{6}
\end{array}
\]
equal to?

Question 50:

What is the value of \( \sin \theta+\cos \theta \), if \( \theta \) satisfies the equation \( \cot^{2} \theta - (\sqrt{3}+1) \cot \theta + \sqrt{3} = 0 \); \( 0 < \theta < \frac{\pi}{4} \)?

Question 51:

Consider the following statements:
1. If \( (a+b) \) is directly proportional to \( (a-b) \), then \( (a^{2}+b^{2}) \) is directly proportional to ab.
2. If a is directly proportional to b, then \( (a^{2}-b^{2}) \) is directly proportional to \( ab \).
Which of the statements given above is/are correct?

Question 52:

The combined age of a man and his wife is 6 times the combined age of their children. Two years ago their combined age was 10 times the combined age of their children; and six years later their combined age will be 3 times the combined age of their children. How many children do they have if each child is at least 2 years old ?

Question 53:

What is \[3(\sin x-\cos x)^{4}+6(\sin x+\cos x)^{2}+4(\sin x)^{6}+4(\cos x)^{6}\] equal to?

Question 54:

What is the value of \( \sin \theta+\cos \theta \), if \( \theta \) satisfies the equation \( \cot^{2} \theta-(\sqrt{3}+1) \cot \theta+\sqrt{3}=0 \); \( 0<\theta<\frac{\pi}{4} \)?

Question 55:

Consider the following statements:
1. If (a+b) is directly proportional to (a−b), then (a²+b²) is directly proportional to ab.
2. If a is directly proportional to b, then (a²−b²) is directly proportional to ab.
Which of the statements given above is/are correct?

Question 56:

Which one of the following is a value of \( \theta \), if \( \theta \) satisfies the equation \( \tan 2 \theta \tan 4 \theta - 1 = 0 \); \( 0<\theta<\frac{\pi}{2} \)?

Question 57:

The combined age of a man and his wife is 6 times the combined age of their children. Two years ago their combined age was 10 times the combined age of their children; and six years later their combined age will be 3 times the combined age of their children. How many children do they have if each child is at least 2 years old?

Question 58:

Consider the following statements :
1. If \((a+b)\) is directly proportional to \((a-b)\), then \((a^2 + b^2)\) is directly proportional to ab.
2. If a is directly proportional to b, then \((a^2 - b^2)\) is directly proportional to \(ab\).
Which of the statements given above is/are correct?

Question 59:

What is the value of \( \sin \theta + \cos \theta \), if \( \theta \) satisfies the equation \( \cot^{2} \theta - (\sqrt{3} + 1) \cot \theta + \sqrt{3} = 0 \); \( 0 < \theta < \frac{\pi}{4} \)?

Question 60:

What is
\[
\begin{array}{r}
3(\sin x-\cos x)^{4}+6(\sin x+\cos x)^{2}+ \\
4(\sin x)^{6}+4(\cos x)^{6}
\end{array}
\]
equal to?

Question 61:

Which one of the following is a value of \( \theta \), if \( \theta \) satisfies the equation \( \tan 2 \theta \tan 4 \theta-1=0 \); \( 0<\theta<\frac{\pi}{2} \) ?

Question 62:

The combined age of a man and his wife is 6 times the combined age of their children. Two years ago their combined age was 10 times the combined age of their children; and six years later their combined age will be 3 times the combined age of their children. How many children do they have if each child is at least 2 years old ?